If it's not what You are looking for type in the equation solver your own equation and let us solve it.
26p^2+3p=0
a = 26; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·26·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*26}=\frac{-6}{52} =-3/26 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*26}=\frac{0}{52} =0 $
| -6+9y=15-12y | | 102/3m=m | | X2-12x=265 | | 4(x4(x+3)=3x+17 | | 2x+18+3x+6=24 | | 3x+4+8=3(x+4) | | j/913=-11 | | 10+5x=0+3x | | 14+31h=70 | | 7x-5x-5=0 | | j/913=-1 | | (3+2y)/4=(5y+6)/7 | | (x-1)^2(x+2)^2=2x^2 | | G(x)=3x+1,G(-1)= | | 1/2x2=20 | | L+a=4 | | (x-1)2(x+2)2=2x2 | | x/5-11=13 | | E^(2x+3)=6 | | x/5-22=-20 | | 2/3(x-40)^=24 | | x/4+3=-15 | | x2-29=0 | | 6x-2(-3x-5)=15 | | (y+3)+9(y+2)=y-3 | | Y=7/3x9+1 | | 5x+3=3(x+1)+2x | | 4x-45=5x+5 | | 1/3x+4=5/6x+1 | | F(x)=3x/x-4x | | 1/2x-2.5=1/3x-(1/3*(-5)) | | c=c+5 |